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A MODEL FOR INFORMATION EXCHANGE
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ABSTRACT: TInformation exchange theory aims at the study and model-
ing of information exchange processes among interacting agents. 1In
this paper, we develop a model for information exchange. The con-
cepts of protocols, types of information systems, mnisinformation
and information distortion, codification, and information distance
are introduced. FExamples of information exchange processes are
given. In the appendix, a model for competitive information ex-
change is presented. The estimation of alien models for this com-
petitive information exchange model is described.\
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l. Introduction

Information exchange theory aims at the study and modeling of
information exchange processes among interacting agents. An agent can
acquire knowledge about the oulside world in two ways: (a) engagement

in direct action, and (b) exchange of informition with other agents.

Faugagement in direct action 1is the prinary vicaas of acquiring
knowledge, whereby experiences are acquired and accumulated. Experi-
ences, as primary source of knowledge, are distilled and abstracted to
construct a knowledge base -~ understanding of the outside world. This
knowledge acquisition process is feasible only for those ajuats capa—

ble of engagement in direct action.

-

However, not all agents are capablce of lnowledge acquisition via
direct action. The second knowledge acquisition process 1is through

exchange of information with other agents.

As illustratet ia Figure 1, in the knowledge acquisition process,
experiences arc abstracted to construct a  knowledge base. This
abstracted information representation in the knowledge base has
several advantages over raw experiences: (a) economy of represcnta—
tion; (b) expressiveness; and (c¢) efficiency in knowledpe transmis—
sion. By communicating with other agents using this abstracted infor-
mation representation, other agents do not have to  rely upon direct

action in order to acquire knowledge.

The process of information exchange can be seen to he an indirect
(and often more efficient) way of constructing a knowledge base about
the outside world, As illustrated in Figure 2, each agent has its own

knowledge base and experiences pool. Information exchange can he seen




to be a replacement and/or supplement to direct action in the real

world.

In this paper, we develop a model for information exchange. In
Section 2, the basic concepts of informatinn exchange theory are in-
troduced. Protocols, types of information systens, misinformation and
information distortion, codification process, and information dis—
tance, are discussed in Sections 3, 4, 5, & and 7, vrosnactively.,

Examples of information exchange processes are given in Section 8.

The appendix describes a model for competitive information ex-
change. The estimation of alien—models for this competitive informa—
tion exchange ndel is described in Section A2 and A3. Section A4
introduces nore  conplicated models. Finally, in Section A5, n-agent

message exchange is discussed.

This paper 1is the first part of three papers on information ex-
change theory. The second part discusses the analysis and synthesis
of information exchange protocols. The third part deals with the
application of information exchange theory to the design of message

filters, and the specification and decomposition of user models.




2. Basic Concepts

The basic conceprs of information exchange theory will now be
introduced to characterize the information exchange process. A formal

model is presented at the end of Lhis section,

We define an agent as some active process (a person, a computer
program, an organization, etc.), which is capable of manipulating data
and assuming different states. In the above, agent, data, and state
are primitive concepts. Ue  define information as data which, when

manipulated by an agent, enables the agent to assume or change states.

The process of juforeation exchange between two agents is called

a conversation or interaction. The unit of information . change is

called a message. The basic dyadic conversational model is illustrat-—
ed in Figure 3 (Note 1). 1In Figure 3, each agent has access to a data
base. Each agent also has a model of itself, called the self-nodel,
and a model of the other agent, called the alien-model. The model of
the alien agent may range from belng v..ry precise to rather vague
(closely coupled to loosely coupled). The conceyt of 12 alien-model
in information exchange theory is important. This olinn~model enables
one agent to couple its information gathering and processing activi-
ties with another agent’s corresponding activities. The coupling pro-

cess is called association, which enables the two communicating agents

to share their experiences and achieve syncrgy (Mot 2), ’

If the (self-model, alien~model) pair of two communicating agents
hecome reciprocally identical after they have correctly estimated the
respective alien-models, then the dyadic system is said to have

achieved synergy or resonance,




The function of the ~ncoder is to encode messages for trausmis—~

sion via a communication channel, and that of the decoder is to decode

the transmitted wmessages. Sometimes the encoder is used to transmit
misinformation, and the decoder is then used to detect the (ran-<als-
sion of misinformation. The usage of misinformation will be discussed

in Section 5.

An information node consists of an agent (with 1its data base,

self-model, alien-model, encoder and decoder) and communication chan-

nels to other information nodes. An information system is a network

of 1interconnected information nodes allowing information exchange

among interacting agents.
We now present a formal definition of an agent as follows.

DEFINITION 1: An agent M is a 9--tuple (X,S,g,h, so, F, E, D, DB),

where

X is a nonempty set of messages (the message space) ,
S is a nonempty set of states (the state space), S = Sr x Ys x Ya, and
Sr is a nonempty set of true states of agent
Ys is a nonempty set of self-models
Ya is a nonempty set of alien-models
g: Sr x (X x X)* => Sr is the true state transition function
(given current true state and history of input/output message
exchanges, g specifies the nex! true state)
h : S x (X x X)* ~> S is the state transition function
(given curreni state ool history of input/output message exchanges,
h specifies the next state)
so in S8 is the initial state
F is a subset of §, the final states
E: S x ¥X->X is the cncoder which maps true
output message to external output message
D : S x X ~>X is the decoder which maps external
fnput message to true input message
N2 15 o ! ka base which stores history of input/output message
exchange, DB is a subset of (X x X)*

As a convention, the message space X contains a null mossape, e,

so that an agent can send out messages spontaneously, or receive
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messages without having to send an immediate response. Thus (xi, e)
indicates M receives a message xi, (e, xj) indicates M sends out a
message xj, and (xi, xj) indicates M sends out a message xj after hav-

ing received message xi.

The true state transition function g can be derived Trom ihe
state transition function h as follows, I(3,1)(h{({wi,wj),s,ys,ya)) =
g((wi,wj),s) for any (wi,wj) in (X x X)*, s in Sr, ys in Ys, and ya in
Ya, where I(3,1) denotes the projection of a 3-dimensional space onto
its first coordinaf., This also implies that h must be consistent, in
the sense that for any Vs in Ys and ya in Ya,

1(3,1)(h((wi,wj),s,ys,ya) are identical.

Let wl, w2 be arbitrary message strings in (X x X)*. [If h(so,wl)
= sl and h(so,wlw2) = s2 implies h(sl,w2) = s2 for any wl and w2, then
the state transition function h can be defined as a function from § x
X x X into S, i.e., the next state depends only on the current state

and the immediate message exchange.

The set of self--models, Y., can be defined as the power set of

Sr
Sr, or 2 . Similarly, the set of alien-models, Ya, can be defined as
Sc’
the power set of Sr’, or 2 , where Sr’ is the truas state space of
other agent. 1In other words, if M is not sure about its Lrue state,

ys represents the set of states which it thinks contains its true

state. In general, Ys and Ya can be arbitrary models of M.

DEFINITION 2: Given two agents Mi and Mj, let (xil, ... , xin) denote

the sequence of messages from Mi to Mj, and (xjl, ... , xjn) the se-
quence of messages from Mj to Mi., A conversation or interaction 1is

the combined scquence of messages ((xil,xjl), ... , (xin,xjn)). A

"Tl
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protocol is the set of rules governing a conversation, durimy which Mi

and Mj attempt to estimate self-~model and alien model. 1f after pro-—

tocol exchange, Mi is in state (si,{si},(sj}) and Mj is in state

(sj,{sj},{si}), then the two agents have achieved synergy or

resonance,




3. Protocols

A set of rules governlang a conversation to enable interacting
agenté to establish vespective models of alien agents and to form
association is called a protocol. It should be noted that association
refers to the coupling of models, and protocol is the set of rules
governing message exchanges to form this association, Protocols are
very important in conversation. Quite often, protocol exchanges are
the only type of conversation sustained. Protocols can he used to
maintain alien—~models. Social relationships such as frienldship often

need the reinforcement by protocols or ritualistic bhehavinr,

Protocols often can be subdivided into many levels. At each lev-
el, a different pair of self-model and alien—~model 1is assumed.
Lower~level protocols become building blocks for higher-—-level proto—~
cols. As an example, social protocols are built upon greeting proto~
cols, As another example, in a computer-communication nctwork, oune
can identify and define many levels of protocols, ranging tfrom physi-
cal 1level, 1link control level, network control level, to user level

protocols [BACHM78}.

Protocols also change in time, with correspoaling changes in
alien—models. For example, when two strangers first meet, they use a
polite greeting protocol. When they become close frienis, khe greet-
ing protocol changes accordingly. When they become lovers and finally

hushand and wife, greeting protocol changes again.

NDifferent modes of interaction can be studied, by studying the

following: (a) how the alien-models are estimated, i.e., the process

of mo’el associa fon; (b} how rh+ alien-models change in time; and (c)
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efficacy and efficiency in information exchange, i.c., the efficacy
and efficiency of obtaining the information <olicited in an informa-

tion exchange process.

Agents can be Ffurther classified into several types: (a)
Collector, or information sink, which solicits and collects informa-
tion and stores informalien in ity data base; (b) Provider, or infor-
mation source, which provides information solicited by other agents;
(c) Analyzer, which processes data stored in its data base to generate
output information; (d) Filter, which condenses and compresses input
information to generate output information; (e) Anniliilator, which
destroys input information; (f) Creator, which spontauncously creates
information. Agents may assume different roles at different occa-
sions. For example, a public relation person is an Annihilator; a
secretary is a Filter in one role, and a Collector in anather role; &
'{rary system serves as a Provider; a company executive is an

Analyzer; and an artist is a Creator.

Protocols among agents can be classified based wpon thair respec-
tive types into P->C, A->C, F-->C, P-DA, P~DF, P~->P, AL-DA, A-DF, and

57 nrotocols.,

Given a protocol exchange (xil, xjl; xi2, xj2; ... ;5 xin, xjn),
we can investigate how this protocol exchange can be used to estimate

the alien-models of interacting agents. Tt is here assumed cthat {(a)

agents do not change state during protocol exchange, and (b) encoder E

and decoder N nervform identity mappings.
For any agent M, two true—-states sl and 82 are sail! 1o be
equivalent with respect to a  message i - a, i, if
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g(sl,(xik,xjk)) = g(s2,(xik,xjk)). This equivalence relation is re-
flexive, transitive, and symmetric. Let A(xik, xjk) denote the set of
equivalent true—~states of an agent with respect to a message pair
(xik, xjk). Let A denote the intersection of A(xil, xjl), ..., A(xin,

xjn), or

A= n Alxik, xjk)

(xik,xjk) is

a message pair

in a protocol

exchange

If A is a singleton set {sn}, Lthen sa is the true state of an

agent during protocol exchange. 1If A contains more than one state,
then the protocol exchange can only be used to estimate the class of
an agent. After protocol exchange, the agent s identified to be a

"class A agent". TFor the other agent, its alien—model ya can be es-

timated as A.

The situation becomes much more complicated, if agoent: change
states during protocol exchange, or encoders are used to distort in-—

formation. Such topics are of interest for further rescarch.

It should be noted that we do not necessarily need to estimate
the true state of an agent, Often we only need to know what class of
agent it is, i.e. the equivalent states, and information exchange can
begin. A person with great "telephone personality” can often obtain
useful {nformation over the telephone. The efficacy and efficiency of
information exchange by telephone is also due to the fact that simple
protocols are used in telephone conversation, to construct "crude"
alien-models. On the other hand, only certain information can be
exchanged that way. Further information «xchange requires better

model associations, i.e.,, more precise alien-models,
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4. Classification of Information Systems

Information systems can be classified, according to the number of
interacting agents, into three categories: (a) Dyadic systems, with
two interacting agents. The dyadic system is the most basic model of
information exchange. (b) Small group systems, with three to nine
interacting agents. (c) Large group systems, with more iy o §oee

teracting agents.

I' ¥ rmation systems can also he classified, according to the con-
trol structure, into three categories: (a) Tutorial system: Onc agent
has control and provides information to other agent or ageats. Other
agent{s) nay ask questions to obtain answers from the tutoring agent.
The tutoring agent may also provide tests and ask questions to fiand
out whether the other agent(s) has obtained the information. (b)
Interview system: One agent has control and asks questions to ascer-—
tain the state(s) of other azent(s). (c) Message interchanpge systenm:
Participating agents share control .l interact with each other to
exchange Information. When interacting agents have no way to
prede‘ermine the areas of expertise and ignorance o7 - & aihar,

shared—~control messapge exchange becomes important.

Each agent in an information system may be: (a) a person, (b) a
machine, (c) a codified agent (sece Section 6), or (d) a complex organ~

ization.

The above classification scheaes provide a matrix of reference to

classify information systems,

(1) Dyadic system can be tutorial dyadic system, interview dyadic sys-

tem, or interchange dyadic system,

I
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(2) Small group system can be panel dJdisxcussion group (tutorial), Del-

phi group (interview), or brain-storming group {interchuge).

(3) Large group system can be public lecture group (tutorial, using
rthetoric techniques) or participatory democracy group (interview).
Large group system is essentially a one~way communicating system, with
limited feedback wusing polling and rating techaiques, A "fire-side
chat", for example, is a large system tutorial camouflaged as a dyadic

interchange.

Current man-machine information systems are either dyadic tutori-
al systems (such as computer—-aided instruction systums) or dyadic
interview systems (such as information retrieval systems). This 1is
because for these two types of systems, the control structure is sim~
ple (one agent has control), and the alien-model can be predefined.
Take the Eliza system as an example. This is a dyadic interview sys-—
tem, with Eliza as the interviewer, and the human participant as the
interviewee. Since the alien-model for Eliza has been taken for
granted (i.e. predefined) by the human participani, Eliza passes as a
psychiatrist. The purpose or goal for Eliza is also taken for graant—
ed. The conversation created by Eliza is not a true conversaltion, bhut

a pseudo~conversation.




5. Misinformation and Information Distortion

Misinformation can be defined as the deliberate distortion of
information by an agent (Note 3). 1In a large system for one~way com-
munication, information distortion is inevitable, because the system
must distort by selection. On the other hand, the receiving agent can

also distort a message because of its information bias,

There are two types of information bias: (a) bias of self-model,

and (b) bias of alien-model. A political leader may be regarded as a
saint by his own countrymen (bias of self-model), and a villain by
foreigners (bias of alien~-model). Protocols can sometimes be used to

hegate iuformation bias of the underlying self--model or aliocn-model.

. In many situations for information exchange, the misrepresenta— 1
tion of information, or the sending of misinformation, {is .alsuo voery

important. Misinformation can bhe exchanged (a) in bargainiay proto-

pupe

cols, (b) as a tool in policy control, and (¢) to avoid undesirable

consequences.,

In bargaining protocols, to achieve some desirable goals or ob-
jectives, agents may send false information, or tell lies. For exam-
ple, in "shopping protocol™, the customer pretends not to buy, so as
to induce the scller to lower the price., The scller also pretends not
to sell, so as to induce the buyer to raise the offering price.
Misinformation is exchanged, in order to estimate the truc alien-
models. Similarly, in international politics, foreign policy is often
meant to change other agent’s model of oneself. However, inaccurate

alfen-models may lead to misinterpretation of messages from alien

agents [SOLOM71]).




In policy control, the government can send carefully prepared

forecast about future outlook of economy to the public (households,
firms and banks, etc.) to induce the public to react in a certain way,
thereﬁy achieving economic stability [TAM79]. For example, the Carter
administration proposed tax rebate on January 29, 1977. When the pub-
lic reacted favorably, resulting in less unemployment, the Carter
administration withdrew the tax rebate proposal on April 14, 1§77.
This is another example of the usefulness of misinformation. Similar-—
ly, in price control, government’s inflation forecast will influence

the workers’ union to change its price expectations and wapge demands.

Misinformation is also often used to avoid undesirable conse~
quences., In a success—oriented society, failures cannot be tolerated
without losing credibility. Misinformation 1is necded to induce
resource expenditures by other agents, to maintain an alien-—model hav-
ing a "success image". Project and product promotion often works this
Wiy, The Edsel syndrome and the Pinto syndrome are good examples.
Vietnam War is yet another example of using misinformation to induce
further resource expenditures to transform "failure" to "success". On
a smaller scale, a professor may also use misinformation to induce a
student to continw: Ph.D., research work, by telling him he is very

near to completion —- which may not be the truth.

In the model described in Section 2, the encoder and doe- v 4y

1

form the conversion of true messages to external wmessages containing

misinformation, and conversely.




6. Codification Process

In an information system, not all interacting agents are active
agents. Some may be codified agents, such as books and motion pic—

tures.

Books can be regarded as information nodes in an information sys—
tem, with author as agent, author’s molel of roader as alien—-model,
and author’s knowledge as his data base (Note 4). The reader 1is the

alien agent communicating with the book as a codified agent. The

codification process (a) delimits and structures data, (b) determines
model of alien agent, and (c) determines mode of communication. The
mode of communication in this example, is the reading of the book by

the reader.

Similarly, a motion picture can also be regarded as a codified
agent, with director as agent, director’s conception of audience as
his alien-model, and director’s knowledge as his data base. The audi-
ence becomes the alien agent, and the mode of communication is the

watching of the motion picture by the audience.

Therefore, the codification process converts a dyadic system to a
large group system with one—-way communication. The codified dyadic
system differs from a large system in two respects: (a) A large system
generally operates by mes<age hroadcasting. 1t is a  time--synchronous
system., The codified dyadic system is a diachronic system (a book can
be read many times, by past, present or future readers). (b) A large
system may allow some fecdback and message interchange, whereas the

codified dyadic system does not allow any feedback.

An information system may also become codified for an external
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observer. This codified system conveys new (and often unintended)
messages to the obhserver. Again, the characteristic of the codified
system is that only one-way communication is allowed, 1i.e. messiages

are transmitted to the observer, but not conversely,
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7. Information Distance

In an information system, some interacting agents exchange infor-~
mation more often among themselves, although they may be geographical-
ly, structurally distant from one another. FExamples of such sub-
groups include: sub—-cultures, professional societies, cliques and peer
groups (Note 5). In addition to a measure of yair of information
transmission, there is a need to define a measure of information dis~

tance.

Let Mi and Mj be two communicating agents, Pij the probability of
Mi sending a message to Mj, and Pji the probability of Mj sending a

message to Mi. The skewed information distance from Mi to Mj,

ds(Mi,Mj), is defined to be 1/Pij, and the skewed information distance
from Mj to Mi, ds(Mj,Mi), is defined to be 1/Pji. The information
distance between Mi and Mj is defined to be d(Mi,Mj) = 1/(Pij x Pji),
or the product of the skewed information distances ds(Mi,Mj) and
ds(Mj,Mi). The smallest information distance d(Mi, Mj) is 1. When

either Pij or Pji is 0, d(Mi, Mj) becomes infinity.

In Section AS of the appendix, the formation of commmicating
sub~groups that raflect the concept of information distance will be

discussed. A preliminary definition of information distance bhetween

two information nodes is also presented in that section.




8. Examples of Information Exchange Processcs

In this section, we draw examples from various disciplines to

illustrate the information exchange processes.

In social psychology, dyadic social iateraction can be modeled as
incremental information exchange between two agents [HUESM76]. Each
agent has a number of psychological states, which 15 assumed to  be
linearly ordered from "shallow states" to '"deep states"., DlMessage
spaces and payoff functlons vary from state to state. An actioa pro-—
tocol determines state transitions -~ message exchanges that are mutu-
ally beneficial can lead to transitions to decper states, resulting in
deeper psychological involvement and more intimate relationships,

This model can bhe used to simulate various behavior patterns in social

psychology.

In transactional analysis |BFRNE73], a transaction is defined to
be a unit of dyadic social interaction of message exchange hetween two
agents. The interaction is determined by interpersonal psychological
state pairs. Fach agent has a goal stuate or final state. le con-
ceives a sequence of state changes and messapge exchanges to lead to
some losirabla poal  state. The nessages are then encoded to bhecome

surface message exchanges. In transactional analysis, the aim of  the

psychologist is to reverse the process, i.2, to decode surface message
exchanges to understand true message eschianges, and  the true  state
pairs in message  exchange.  For example, a surface messape exchange
may be interpreted as the interaction of one agent in "parent-state"

with another agent in "child--state",

In economic theory, we have cconomic agents exchanginyg messages

. - W

e T

e 4
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which are either price information or resource exchange information
[HAYEK45]. The economic enviromment defines the characteristics of an
agent: its preference relatjon, initial endowment, and technology set.
The ad justment process then specifies the méssage space for agents,
and the response rules (the adjustment mechianlsm) that the agent must
follow [HURWI59, CAMAC70]. One can then study problems such as
economic equilibrium, informational efficiency, and system performance
characteristics of a given economic environment siatisfying certain
properties [TINBEA7]. One can also study the optimal prestructuring

of information ex¢! nge p-astocols for decision making [ALBINSI1].

In the .hyve, we have given examples of information exchange
involving two or more active agents. The interacting agents may en-
gage in team work toward some common objective [HARSC72; GROVE73]), or
may be competitive and antagonistic to one another, as will be dis—~

cussed in the appendix.
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9, Discussion

This paper has presented fundamental concepts of information
exchange theory. It is hoped that the conceptual framework presented
in this paper may lead to systematic ways of understanding the infor-
mation exchange processes in complex organizations or social systems.
As an example, our understanding of a complex organization usually
combines several types of information exchange processes: (a) system~
level messages in the form of measurements of system state indicators
(number of employeecs of an orpanization, average salary, age and race
distribution, etc.); (b) dyadic message interchanges (interview of f
individual members from an organization); (c) groﬁp interviews (pol-~

ling and rating); (d) messages from colified agents or codified infor—

mation systems (books, reports, statement from employees’ union,
etc.); and (e) tutorials (news broadcast, television news, etc.) (Note

6).

Information exchange process has two other interesiiag churacs

teristics: (a) Information exchange usually happens at several levels

simultaneously. Message exchange at one leval is usually interpreted

and acquires significance and meaning at a different level. This

multi~leveledness is apparent in many information exchange processes.

(b) Information exchange usually is nulti-directional, with intention-

al effects as well as wunintentional side «ffects, Information
transmission is often spontaneous --- although the iateracting agents
may not intend to exchange information in a certain way, it happens
often to be the case. This again is due to the multi-level nature of
the information exchange process. It is also related to the codifica-

tion process discussed in Section 6. As a result, The efficacy aund




efficiency of an information exchange process can be evaluated in mul-
tiple ways, depending on the level of message exchange of interest,

and the direction of message exchange of interest.

In conclusion, the study of how differeat types of information

exchange processes are combined, how such messayes e <iorad in a

knowledge base, and how to perform mnmulti-level, multi~directional
evaluation of the efficacy and efficiency of an information exchange

process, will be of interest for further investigation,
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Notes:

l. An information exchange system may utilize a telecommunication sys—
tem, or a transportation system, or a combination of both, to make
message exchange feasible. Computer information systems are also

utilized to facilitate information exchange, or to implement an infor—
mation exchange system.

2. The Lartin root for communication, communico, means "to share".

3. "The lie is the specific evil which man has introduced into na-
ture", Martin Buber, Good and Evil, Scribner’s, 1973, pp. 7.

4. "These are not books, lumps of lifeless paper, but minds alive on
the shelves., From each of them goes out its own voice, as inaudible
as the streams of sound conveyed day and night by electric waves
beyond the range of our physical hearing; and just as the touch of a
button on our set will fill the room with music, so by taking down one
of these volumes and opening it, one can call into range the far Jdis—
tant voice in time and space, and hear it speaking to wus, mind to
mind, heart to heart." Gilbert Highet

5. World-wide information system need not lead to universal conformi~
ty. It may also lead to deliberate nonconformity.

6. In dynamic social systems, information exchange processes also
exhibit time-~dependent changes. For example, during the initial phase
of a political movement, there usually is a sudden increase in the
need to communicate among participants (publication of pamphlets,
meetings, public lectures, etc.). When synergy is achieved and the
participants share similar self-models, alien~models and goals, the
need to communicate decreases, After the movement 1is institutional--
ized, the usual information exchange processes are reestablished.
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Appendix: Competitive Information Exchange

Al. Competitive Information Ixchange Model

In what follows, we will describe a model for competitive infor-
mation exchange. Competitive information exchanve situations arise in
economic message exchanges and in game theory. In our nodel, each

agent Mi has a payoff function associated with exchanpged messapes as

follows:

xi Xj payoff
0 0 al
fi 0 1 al
1 0 a2
1 1 al

where ai ar ~1, 0 or +1, and aO+al+a2+ald=0. 1In dyadic competitive
message exchanpse, each agent will take turns in sending messages to
the other agent, who then responds. In other words, agent ‘! sends xi
to apent Mj, who responds by sending back xj. The payvoff to i is
obtained from the payoff function fi. Conversely, Mj rnay also send xj
to Mi, who responds by sending back xj. The apent with the highest

accumulated payoff 1is the winner.

As an example, agent M1 has the following payoff function:

x2 payoff
0 0
f1 1 1
0
1

—_—0 D%

0

Similarly, agent M2 has the following payoff function:
2 1 payoff
1
-1
1
~1

f2

—_—— s A
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If Ml sends 0O to }M2, who responds by sendinge back 0, then the
payoff to Ml is 0 (using payoff function fl), and the payoff to M2 is
1 (using payoff function f2). 1In other words, cach asent uses his own

payoff function to calculate his payoff.

In general, each agent ili knows only his pavoff function fi —-
i.e. e has an accurate self-model. Therefore, each agent may attempt
to optimize his payoff by selecting appropriate action rules with
respect to his payoff function. A reasonable strate;y is to send and

respond to messages by optimizing expected payolf.

DEFINITION 2: The optimal expected payoff rules for !'i are:

(li.1) send 0 if aO+al > a2+a3 (expected payoff Tl is 0.5(a0+al) )
send 1 if al+al < a2+a3 (expected payoff Fl is 0.5(a2+a3) )
send 0 or 1 1f al+al = a2+a3 (expected payoff L1 is 0.5(a0+al)

(Mi.2) when receive N, respond 0 1if a0 > a2 (expected pavoff L2 is a0)

respond 1 if a0 < a2 (expected payoff I'? is a2)
respond 0 or 1 if a0 = a2 (expected payeff T2 is a0)

(Mi.3) when receive 1, respond 0 if al > a3 (expected pavoff '3 is al)

respond 1| if al < a3 (expected payoff 1.3 is a3)

respond € or 1 if al = a3 (cxpected payoff I3 is al)

The overall expected payoff E is given by the expression:

(1) L

0.S5E1 + 0.25T°2 + 0.25I3
0.5 max{(aO+al,a2+al) +
0.25 max(a0,a2) +

0.25 pax(al,a3)

For example, Ml may select the following action rules:
(1"l.1) send 0 (expected payoff FEl1=0.5)

(M1.2) when receive 0, respond 0 (expected payoff F2=0)
(1'1.3) when receive 1, respond 0 (expected payoff I'3=1)

and the overall expected payoff I = 0.5. On the other bhand, M2 wmay

select the following action rules:

(M2.1) send 0 or I (expected payoff T1=0)
(}12.2) when receive 0, respond 0 or 1 (expected payoff T2=1)
(}12.3) when receive 1, respond 0 or 1 (expected payoff I ==1)

)
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and the overall expected payoff I = 0. Such action rules will puaran-
tee that optimal expected accumulated payoff is obtained if the op=-

ponent sends and responds to messages randomly.

DEFINITION 3: An agent who behaves according to the optirmal expected

payoff -rules is called an llonest Ceorpe Apent (HCA).

It should be noted that the state space § of an HGA consists of a

single element (fi,fi,*), where fi is its self-model, and * is a spe-

clal symbol denoting a random opponent.

THEOREM 1: The expected overall payoff I of an honest jeorse agent

(KGA) facing a random opponent is always nonnegative.

PROOF: There are only 19 different payoff functions (1l with all 0’s,
12 with one 1, and 6 with two 17s). We can enurerate these payoff
functions to prove that the cxpected overall payoff i° (cqu. (1)) of
HCA 1s always nonnegative. T'  nineteen payoff functions are 1listed

in Table Al:

function no. a0 al a2 a3

0 1 -1 1 -1
1 -1 1 ~1 1
2 0 0 0 0
3 1 -1 0 0
4 -1 1 n 0
5 n 0 ! -1
6 0 0 -l 1
7 1 o 1
R -1 1 i -1
9 1 ) 0 -1
10 -1 ¢ 0 1
11 0 1 -1 0
12 0 -1 ) 0
13 1 0 -1 0
14 ~1 0 1 0
15 0 -1 0 ]
16 0 1 0 -1
17 1 1 -1 ~1
18 ~1 -1 1 1
Tahle Al Nipeteen payoff functions
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Alternatively, we can prove the above theoren analyvtically as
follows. TFirst, we observe that [l > 0. Suppose not, then from equ.
(1), there are two cases: (i) El= al +al <0. Since a0 + al + a2 + a3
= 0, we have a0 + al = =(a2 + a3) < 0, or a2 + a3 > 0> a0+ al, im=-
plying that El = a2 + a3 > 0, a contradiction. (ii) Fl = a2 + a3 <0.
Similar argument lcads to a contradiction. MNext, suppose that E <0.
From equ. (1), we have 0.5CE1 + 0.25F2 + 0.251.3 <0. Since I'l > 0, we
must have F24F3 <0. There arce two cases: (i) E2 <0. Fror equ. (1),
al=a2= ~1. Since a0+al+a2+a3=0, we must have al=a3=1, and thus L3=1l.
but then, E24E3=0, a contradiction. (ii) T3 <0. Similar arpument

leads to a contradiction. Therefore, L cannot be negative. O.1.D.

The above theorem says that the expected paveff for an  HGA
against any opponent is always nonnegative, (Honest Georpe is basical-
ly an optiministic fellow!) and the optimal expected pavoff is actual=-
ly attained, if the opponent is a random apent (which is cquivalent to

an HGA with payoff ai’s identically zero).

When both ML and M2 in the above example are honest Ceorres, then
their message exchanpes are determined by the optimal expected  payoff
rules. For the above example, the exchanpes arc: (a) il sends 0, and
M2 responds with 0 or 1; (b) M2 sends 0 or 1, and MI respoads vith 0.
Therefore, their respective payvoffs can be tabulated as follows:
Ml=send=0 M'2=response=0 Hlepayoff= 0 Y2=pavoff= 1
Ml=send=0  M2~response=l Ml-payoff= 1 M2-payoff= 1
12-send=0 Mleresponse=0  Mlepayoff= 0 M2-payoff= 1
1

M2-send=1 Ml=-response=0  Ml-payoff= M2-payoff= 1

Ml=averape=-payoff=0.5 M2~averape-payoff=1

It is seen that bhoth M1 and M2 have positive averape payoffs, and




12 is the winner.

On the other hand, if an agent Mi has acquired knowledge concern~-
ing. the payoff function fj of his opponent agent !'j, {.e., he has an
accurate alien model, then he can attempt to optimize his performance
by selecting appropriate action rules with respect to both payoff
functions fi and fj ~- i.e. he has both a self-model and an alien
model. lHis action rule (both for scnding and responding to messages)
is such that the expected value of the difference of his payoff and

his opponent’s payoff 1is maximized.

DEFINITION 4: An agent who takes advantage of his knowledae of op-

ponent agent’s payoff function and possible action rules, is called a

Tricky Dick Arent (TDA).

The state space of a TDA also consists of a sintle eclement

(fi,fi1,fj), where fi is its self-model, and fj is its alien wodel.

For example, if Ml is UHCA, and M2 is TDA, then their respective
payoffs can be tabulated as follows:

Ml-send=0  !MZ-response=0) }Ml-payoff= 0 H2=-payoff= 1
M2-send=0 Ml-response=0  Ml-payoff= 0 M2-payoff= ]

Ml-averape=-payoff=0 N2-average-payoff=1

If M1 is TDA, and M2 is HCA, then their respective payoffs can be
tabulated as follows:

Mi=send=1 M2-response=0  Ml-payoff= =] M2-payoff= =1}
Ml-send=1 M2-response=1 Ml-payoff= 0 M2-payoff= -1
M2-send=0 IlMi-response=] Ml-payoff= -1 M2=pavoff= =]
M2=-send=1 Ml-response=1 Ml-payoff= 0 M2-payoff= -1 .

Ml=averame-payoff= =0.5 M2-averape~pavoff= -l

From the above example, we have the following theorein:
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THEORFM 2: A tricky Dick !'i can win over an honest Ceorge lj, even if

the honest George Mi loses to the hcenest Ceorge Mj. In other words,

it pays to play tricky. To put it in another way, honesty is not the

best policy!!

Finally, 1if both 11 and M2 are tricky Dick, then their respective
payoffs can be tabulated as follows:

Ml=-send=1 M2-response=0 lMl-payoff= «1 M2~payoff= -1
M2-send=0 !ll-response=l Ml-payoff= -1 H2=-payoff= ]

tl-average~-payoff= -1 tiZ-average-payoff= -1 .

The above example illustrates that when both sides play dirty, f}

they may square off. lowever, it is also true that they both loses in

absolute terms! There is a moral in this example -~ live and let live!

This is similar to the '"prisoner’s dilemma’ in econonmics theory.

' In a simulation experiment, proframs were written to simulate (a)
the behavior of HCA, and (b) the behavior of TDA who has perfect

knowledge about his opponent’s payoff function. All tournament combi-

nations of HCA against WHGA, HCGA apainst TDA, and TDA acainst TDA,

using the nineteen different payoff functions, are tried. The results

are summarized in Tigures Al(a)=(d).

Some general remarks concerning the tournament results can now be
stated. From Figure Al, it can be seen that the averape payoffs in-
crease according to the payoff functions: some payoff functions (name-
ly, #0 and #1) always yleld lowest averape payoffs, and sore other

payoff functions (namely, #17 and #18) always yleld highest average

payoffs. It 1s also clear that TDAs generally have advantage over

HGAs, because they have information on opponent’s payoff functions.

However, a more detalled analysis shows the limitations of ThAs.




-31- |
I

As an example, we take payoff function #¢, with a0=0, al=0,

a2=-1, a3=l, and list its tournament results in Table A2:

tournament average payvoff prob to win Pl prob to draw P2 P1+P2

HCGA# 6 vs HGAs 0.25 0.263 0.3€8 0. €31

HCA#6 vs TDAs -0.132 0.053 0.263 0.316

TDA# 6 vs HGAs 0.11R8 0.421 0.31¢ 0.737

TDA#6 vs TDAs -0.263 0.211 0.31¢ 0.527
Table A2 Tournament results for Agent f¢€

It can be seen that UGA#6 wins or draws with probability 0. 631
VS. HGAs, and that probability decreases to 0.31¢ vs. TDAs. 1Its
average payoff also decreases from 0.25 to -0.132. On the other hand,
TDA#H wins or draws with probability 0.727 vs. iiCAs, and that proba-
bility decreases to 0.527 vs. TDAs. Its average payoff also de-
creases from 0.118 to -0.263. Therefore, we can conclude that if an
agent acts as a TDA instcad of an HCA, he may win or draw more often,
but his average payoff may decrease. The same conclusion can be
dravwn, by looking at the average (over all payoff functions) of the

above values, as shown in Table AJ:

tournament averape payoff prob to win Pl prob to draw P2 P
an [HCA vs lGAs 0.421 0.33¢8 0.305
an HCA vs TDAs 0.116 0.211 0.313
a TDA vs liCAs 0.305 0.476 0.477
a TDA vs TDAs 0.0 0.338 0.324
Table A3 Average turnament results

Some other remarks arc in order: (1) a TDA facing a random op-
ponent is indistinguishable from an UHCA with sawme payoff function; (2)
an HCA never wins with negative payoff, although some TDA does; (3) an
HCA always draws with itself, a TDA will also draw with itself but may
do so with averape payoff =13 (4) the HGA with payoff function

(0,0,0,0) is the random agent. It never wins, although the TDA with

same pavoff function may win; (5) {f HCGA with payoff function fl wins

1+P2

0. 043
0.524
0.953
0. 662
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over TDA with payoff function f2, then the same HCA will also win over
HGA with payoff function f£2; (6) the only apents (honest or tricky)
that never win over any tricky agent, are those with payoff functions
#0(1,-1,1,-1), #1(-1,1,~-1,1), and #2(0,0,0,0). As a matter of fact,
the HGAs with these three payoff functions have similar behaviov; (7)
An NGA may win over a TDA. Tor example, liGA with payoff function

#17(1,1,~1,-1) can win over any TDA.

A2. FEstimation of Alien-Model of lICA

The next problem we wish to investigatc is the estimation of
payoff functions or estimation of alien -models. A tricky Dick Ms
would like to know the payoff function (or alien agent’s state) of his
opponent !Ma. Suppose the opponent’s payoff function fa=(a0,al,a2,a3)
is not directly observable. The TDA may try to cstimate fa by observ-

ing the opponent’s message sending/responding behavior.

For a TDA to estimate the payoff function of his opponent (assum-
ing it is known that his opponent is an HCA), he must waste some of
his moves to gain information regrarding the behavior of his opponente.
Specifically, he must cxamine what his opponent is sending, him and
whqt his opponent is responding when he sends messares to his op-
ponent. It is clear that by examininp a sequence of rmessares sent
back and forth, the TDA will be able to cateporize his opponent into
one of several classes; and then for the remainder of the {nteraction
the TDA can react according to the class of the payoff functions rath-

er than to an individual payoff function.

Using Definition 2, the payoff functions of an IICA can be divided

iI.....-.--,.--.-l-----:_ﬁ
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into nine classes. For each class, the external behavior of the MHGA i
is the same.
CLASS A: aO+al>a2+a3, a0>a2, al>a3

#17¢1,1,-1,-1), #9(1,0,0,-1), #11(0,1,~-1,0)

CLASS B: a(+al>»a2+a3, a0>»a2, al=al
#13(1,0,-1,0)

CLASS C: aO+al>a2+a3, aO=a2, al>a3 §
#16(0,1,0,-1)

CLASS D: aO+al=a2+a3, a0=a2, al=a3 » !
#0(1,-1,1,-1), #1(-1,1,-1,1), #2(0,0,0,0)

CLASS E: afM+al=a2+a3, a0>a2, al<a3l
#3(1,-1,0,0), #7(1,-1,=-1,1), #6(0,0,-1,1) ¢

CLASS F: aO+al=a2+a3, al<a2, al>a3
#5(0,0,1,-1), #8(-1,1,1,-1), #4(~1,1,0,0)

CLASS G: aO+al<a2+a3, al<a2, al<a3
#12(0,-1,1,0), #10(-1,0,0,1), #18(-1,-1,1,1)

CLASS H: a0+al<a2+a3, a0=a2, al<al
#15(0,-1,0,1)

CLASS 1: a0O+al<a2+a3, a0<a2, al=a3
#14(-1,0,1,0)

THEOREM 3: GCiven only the external behavior of an HGA, it is impossi-

- ble to correctly estimate its payoff function.

Therefore, the TDA can only estimate his opponent’s class of
payoff [functions. However, 1if the TDA can also observe the current
winner, then he con further pinpoint the opponent’s payoff function

into a smaller class.

In most cases, the categorization of the opponent’s class of
payoff functions is not sufficient in determining the action rules for
a TDA. One way to formulate the action rules for the TDA would be to

assume that, given a class of payoff functions, the opponent will

always be using the best possible payoff function in that class. In




other words, the TDA will be reactinc to the vorst case. This TDA
will be somewhat limited in its power, and his advéntage over an HGA

is therefore lessened.

A3. DLstimation of Alien-lodel of TNA

Similarly, 1if the opponent is a TDA, its class of payoff func-
tions can also be estimated. Suppose the self TDA lls has payoff func-
tion (s0,s1,s2,53), and the alien TDA !'a has payoff function

(a0,al,a2,a3). The following relations can be deduced:

(1) If TDA Ma sends 0, then ((a0+al) = (s0+s2)) > ((a2+a3) ~
(sl+s3)), or ((a0-a2) + (al-a3)) 3 ({(s0=sl) + (s2~s3)).
(2) If TDPA Ma sends 1, then ((a2+a3) - (sl+s3)) > ((aO+al) -

(s0+s2)), or ((a0~-a2) + (al-al)) ¢ ((sN-sl) + (s2~s3)).
(3) If Ms sends 0 and TDA Ma responds with 0, then a0-s® > a2-sl, or

al-a2 > s0-sl.

7

(4) 1f t's cends 0 and TDA Ma responds with 1, then a(-a2 sfO-sl.

[¥aY

(5) If Ms sends 1 and TDA Ma responds with 0, then al-s2 > al=-s3, or

al-a3 > s2-s3.

A
4]
o

)
1]
W
.

(€) 1f I's sends | and TDA la responds with 1, then al-a3 <

From the above relations, the payoff functions of TDA can again
be divided into & classes:

CLASS a: a0-a2<sfN-sl, al-al3<s2-s3, ((a0-a2)+(al-a3))<((sC-s1)+(s2~53))
o0, #, #2, #8, 10, #12, #14, #15, #18

CLASS b: a0=-al2=s0-sl, al-al<s2-s3, ((al-a2)+(al-al3))<{(s0-s1)+(s2=-s3))
#3, f¢€

CLASS c¢: a0-a2<s0=-sl, al-ald>»s2-s3, ((a0-a2)+(al=-ald))<((sP=-sl)+(s2-83))
#t7

CLASS d: a0=al>s0-sl, al-a3>s2-s83, ((a0=a2)+(al=al))>((s0-s81)+(s52-53))
17

CLASS e: a0-al2=s0=s], al-ald=s2-s53, ((a0=a2)+(al=ald))=((s0-s51)+(s2-813))
£9, #11

kb e e
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CLASS f: a0~a2<s0-sl, al-a3>s2-s3, ((a0-a2)+(al=-al3d))=((sC=-5l)+(s2~-53))
1€

CLASS g: a0-a2>s0-sl, al-a3<s2-s3, ((a0-a2)+(al=-a3))=((s0-s51)+(s2=-s3))
#13

CLASS h: a0-a2<s0-sl, al-ald=s2-s3, ((a0-a2)+(al-a3))<((s0-s1)+(s2-s53))
#4, #5

A4. Sophisticated NGA and TDA

In this section, we investigate the use of risinforrmation in our
model. TIn other words, messapes will be encoded by an encoder, before
beiny sent to the opponcut. The opponent will usce a decoded to decode
the incoming messages, before responding to theme Ve define a sophis-
ticated HCA (SHCA), which sends messages not entirely according to his
optimal expected payoff rules, and a sophisticated TDA (STDA), which
estimates the payoff function of his opponeut SHCA and sends messages

according to his estimation of opponent’s payoff function class.

SUHGA sends messages accordiny to optimal expected payoff rules
with probability (l-p), and not according to optimal exprcted payoff
rules with probability p. 1f 0g p <0.5, SUCA sends rore "richt" mes-
sages. 1f p = 0.5, his messapes are randome If 0.5 < p < 1.0, he

sends more "wronp"” messages than "right" messares.

STDA observes the action of SHCA for a sufficiently loace time.
In response to STDA’s messace 0, if SHCA sends more 0°s than 1°s, then
STNA concludes that a0>a2; 1f SHCA sends as pany 0°s as 1°s, then STDA
concludes that a0=a2; otherwise he concludes that a0 < a2. In this
manner, STDA can estimate to which class his opponent’s payoff func-

tion belonss.

In other words, STDA assumes that the probability p with which




SHGA sends wrong messapes is less than or cqual to 0.5. Since STDA
does not know p, it is natural that he assumes that his opponent will

send more right messages than wronp ones.

Therefore, if O < p< 0.5, STDA can correctly estirate the class
of opponent’s payoff function. If p = 0.5, STDA regards his
opponent’s payoff function to be in Class D. 1If 0.5 < p < 1.0, STDA

cannot correctly estimate the class. Tor example, functions belonging

to Class A are reparded to be in Class G, and the conditions are in-

terpreted to be their opposites. Similarly, classes I and F, B and I,

C and H, are naturally confused.

Table A4 1illustrates the averape probabilities of SIICA and STDA
to win or draw over all possible cases, for some fixed ~values of p.
(The results are averaged over all payoff functions in a function
class estimated by STDA.) The results are also depicted in Figure AZ.
Some general conclusions can now be drawn.

Probability To Win Or Draw

P SHCA ST DA
0.0 0. 632 0. €79
0.2 N. 448 0. 684
0.4 0.344 0.788
0.49 0.323 0.809
0.5 0.540 0.810
0.51 N417 0.711
0. 6 N.404 0.724
0.8 0.354 0.775
1.0 0.347 0.787
Table A4 Probabilities of SHGA and STDA to win or draw

then p 1s 0, STDA knows only the class to which SHUCA’s payoff
function belongs, and his strateny of maximizing the expected value of
difference of their respective payoffs does not always succced.

Instead, SHGA always sends messapes maximizineg his expected payoff.
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So in this case, SICA (who wins or draws with probability ©0.632) is
actually stronger than STDPA (who wins or draws with probability

0. 679).

As p 1increases toward 0.5, STDA gets stronyer, and SHUGA gets
weaker, because the situation concerninp STDA remains the same, but
SHGA no lonper always sends messaces maximizing his expected payoff.
In particular, when p = 0.49, STDPA wins or draws with probability

0.809, and that for SUCA becomes 0.323.

When p reaches 0.5, SHCGA becomes the random opponente. Beyond
this point, SHCA sends more wrong messages than ripght messages. But
as the STDA assumes his opponent’s payoff function to be in the oppo-
site <class, his stratepsy to maximize the difference of their payoffs
also hardly succecds. No general conclusion can be drawn, except that
SIDA 1is stronpger than SHCA when p is larser than 0.5. It should be
noted, however, that SUCA is stronger when he always sends wrong mes—
sapes (at p=1.0, he wins or draws with probability C.347), than when
he sometimes sends wrong messages (at p=0.4, he wins or draws with

probability 0.344).

AS. N=~Accnt Messape Fxchanpe

Ve can now define n-apent competitive information exchanye. Sup-
pose therc are apents !'l, M2, ... , !m. Tach agent i will take turns
in selecting another agent I1!j, and send him a messapge, who must then
respond. In other words, agents send (and respond to) messages in
round-robin Cfashion. Some agents mnay want to becowre cocperating

apents, because they have complementary payoff{ functions. IF'or c¢xan=-

ple, {f Nl 1likes to recceive more 0’s, and M? likes to receive more
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s, then they can cooperate, because each stands to paine Thereflere,
the action rules of an arcnt need to include rules to select (over a

eriod of interactions) those agents that are cooperatinge uith hime
P i ! it

A computer pro;sras was written to sirulate n=aeent inforrmation
exchange [CHANC7€)]. The projram sinulates 12 0As communicatin:  with
onc another, each apent having a different payoff function. Tvo rules
are used in round-robin messapye exchange. Fule 1: &n a-ent  will
selecct those opponents who vill sive hin positive averase nayoffs to

communicate with. Tule 2@ An acent vill decline to  corvnmmicate  with

those opponents who will vive him nepative averase payoffs. ﬁ

In the beginning of the sinulatjion experirent, cach o ot will
cormunicate with all other agents. After applyins Nule 1, it iz noted
that average payeffs of wmest acents Jdo show an inerease. *frer the

application of Pfule 2, in addition to increase of payeffs, it je noted

that cliques have been foreed. Unless pavoff functious are chonged, o
definite ressage exchaupe pattern anonp the verious snarticirating
arents have been formed. Therefore, if ve regard the resopoe enchanpe !

<

pattern as a eraph, we can define the inforration Jdistance tetuoen two

inforration nodes in an information systen as the shortest jath frowm 1'
|
I
I

onc inforration node to another inforration vede, vhere the are wveight

between two ad jacent infornation nodes is  the inforoation  Jdistance
Letween these two peents, as defined in Section 7. TF no poths exnist,
thhen the tnforration listance betveen two information nedes is infini=-

tyo
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The information distance matrix A for the nineteen HCAs is {illus-~
trated below, where an asterisk indicates an infinite information dis-

tance.

!/

T % N N R K K K K K N ok ok ok k ¥ Ok *

R WN NN NN NN = - %
BN M= PO e R et ROED = =B = N — N = *
— NN = k= P RN = =R NN = N = %
N 2= bt N b= NN 2=t = N NN = N~ DN — N %
— = L e D= R =N = NN N =N N~
— = L) = NN BRI N NN = N N =N %
—_ O RW RN = RN = =R NN ¥
— e W RN NN NN NN == =N %
N = DO N M= N == N N = N = =N ®
— NN LD N = N D =) = N N N~ %
RO = N = N = N == N = NN R e e NN %
—_R = RN e RO N N R NN e N
N RWANNERNWNRNRDWW=RN — W %

— e N P b bt b = B P e RN = RN N = X
Pt g gt N b b= RO R R N N e e R = N B
O RNW=N R NN W LD = WD NDW *
N = NN = = B = N e bt s s e = N = N ¥
—_ NN R = e RO N R e e e N~ N — ¥

It is noted that HCA #0(1,-1,1,-1) does not communicate with any
other agent. If we define a k-clique as a set of nodes in which the
information distance between any two noues is no greater than k, then
iGAs #1, {#3, #18 form a l-clique, HCAs #2, #10, #106 form a 2-clique,
and all the HGAs, excluding #0, form a 3-clique, etc. Disregarding
HGA #0, the average information distance is 1.617. The average infor-
mation distance for HGA #16é to other ilIGAs excluding #0 is 2.055, which

is the maximum; and for HCGA #!3 is 1.388, which is the minimum.
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Figure 3

Average payoff of the first agent (HGA)
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